Improved Bounded Matrix Completion for Large-Scale Recommender Systems
نویسندگان
چکیده
Matrix completion is a widely used technique for personalized recommender systems. In this paper, we focus on the idea of Bounded Matrix Completion (BMC) which imposes bounded constraints into the standard matrix completion problem. It has been shown that BMC works well for several real world datasets, and an efficient coordinate descent solver called BMA has been proposed in [R. Kannan and Park., 2012]. However, we observe that BMA can sometimes converge to nonstationary points, resulting in a relatively poor accuracy in those cases. To overcome this issue, we propose our new approach for solving BMC under the ADMM framework. The proposed algorithm is guaranteed to converge to stationary points. Experimental results on real world datasets show that our algorithm can reach a lower objective function value, obtain a higher prediction accuracy and have better scalability compared with existing bounded matrix completion approaches. Moreover, our method outperforms the state-of-art standard matrix factorization in terms of prediction error in many real datasets.
منابع مشابه
A social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملOrdinal Rating of Network Performance and Inference by Matrix Completion
This paper addresses the large-scale acquisition of end-toend network performance. We made two distinct contributions: ordinal rating of network performance and inference by matrix completion. The former reduces measurement costs and unifies various metrics which eases their processing in applications. The latter enables scalable and accurate inference with no requirement of structural informat...
متن کاملGPUFish: A Parallel Computing Framework for Matrix Completion from A Few Observations
The problem of recovering a data matrix from a small sample of observed entries, also known as matrix completion, arises in several real-world applications including recommender systems, sensor localization, and system identification. We introduce GPUFish, a parallel computing software framework for solving very large-scale matrix completion problems. GPUFish is modular, tunable, inherently par...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017